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A three-dimensional mathematical model based on the Brinkman extended Darcy
equation has been used to study double-diffusive natural convection in a fluid-
saturated porous cubic enclosure subject to opposing and horizontal gradients of
temperature and concentration. The flow is driven by conditions of constant tempera-
ture and concentration imposed along the two vertical sidewalls of the cubic enclosure,
while the remaining walls are impermeable and adiabatic. The numerical simulations
presented here span a wide range of porous thermal Rayleigh number, buoyancy
ratio and Lewis number to identify the different steady-state flow patterns and bi-
furcations. The effect of the governing parameters on the domain of existence of the
three-dimensional flow patterns is studied for opposing flows (N < 0). Comprehen-
sive Nusselt and Sherwood number data are presented as functions of the governing
parameters. The present results indicate that the double-diffusive flow in enclosures
with opposing buoyancy forces is strictly three-dimensional for a certain range of
parameters. At high Lewis numbers multiple dipole vortices form in the transverse
planes near the horizontal top and bottom surfaces, which the two-dimensional mod-
els fail to detect. The dipolar vortex structures obtained are similar to those created
in laboratory experiments by the injection of fluid into a stratified medium.

1. Introduction
Natural convection flow resulting from the combined action of temperature and

concentration, which is also called double-diffusive convection, has recently been the
subject of intense research activity in view of its importance in various engineering
and geophysical problems. Among these are the migration of moisture through the
air contained in fibrous insulations and grain storage installations, solute exchange in
sediments in coastal environments, the transport of chemical contaminants through
water-saturated soil and disposal of nuclear wastes in underground sites. As reviewed
by Song & Viskanta (1994) the mushy zone existing during the solidification of alloys
consists of a fine mesh of dendritic crystals growing into the melt, owing to the solu-
bility difference between the solid and liquid phases. The composition of the resulting
solid is generally different from that of the melt when a melt of two or more compo-
nents solidifies. Therefore, heat and mass transfer occur simultaneously in the mushy
zone, which can be modelled as double-diffusive convection in a porous medium.

Heat and solute diffuse at different rates, as a result of which complex flow
structures may form which have no counterpart in buoyant flows driven by a single
component. Research in this field is mainly based on two configurations. The first
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situation is concerned with a fluid-saturated horizontal porous layer subjected to
vertical temperature and concentration gradients (Taunton, Lightfoot & Green 1972;
Taslim & Narusawa 1986; Trevisan & Bejan 1987; Murray & Chen 1989; Rosenberg
& Spera 1992; Chen & Chen 1993). The studies on horizontal porous layers were
primarily directed to the establishment of a criterion for the onset of motion via
stationary and oscillatory modes, on the basis of a linear stability analysis.

The second configuration involves vertical porous enclosures subjected to horizontal
temperature and concentration gradients either by imposing uniform heat and mass
fluxes or constant temperature and concentration on the vertical boundaries. In
this category some of the studies are concerned with cooperating double-diffusion
where the flow is driven in the same direction by the thermal and solutal forces
(Trevisan & Bejan 1986; Alavyoon 1993; Mamou et al. 1995b; Goyeau, Songbe &
Gobin 1996). The case of double-diffusive convection in a vertical enclosure due
to opposing buoyancy forces has also been investigated. Trevisan & Bejan (1985)
studied double-diffusive convection in a square porous cavity for both aiding (N > 0)
and opposing (N < 0) buoyancy forces due to horizontal gradients of temperature
and concentration in the range −5 6 N 6 +3, where N is the solutal to thermal
buoyancy ratio. The two-dimensional numerical results based on the Darcy model
were compared with that of a scaling analysis. Alavyoon, Masuda & Kimura (1994)
extended the analytical boundary layer solution developed earlier for aiding flow
in a porous cavity subject to constant gradients of temperature and concentration
at the vertical walls (Alavyoon 1993) to include the opposing buoyancy forces. In
addition, the phenomenon of oscillating convection in vertical porous cavities, subject
to opposing horizontal gradients of temperature and concentration, has also been
investigated. The existence of multiple solutions for double-diffusive flow in a vertical
enclosure subject to opposing fluxes of heat and solute was demonstrated analytically
and numerically by Mamou, Vasseur & Bilgen (1995a). The effects of non-Darcy flow
parameters such as Darcy number and porosity on heat and mass transfer within
a rectangular enclosure subject to both aiding and opposing gradients of heat and
mass has been investigated by Nithiarasu, Seetharamu & Sundararajan (1996) using
a generalized porous medium approach. Recently, Mamou, Vasseur & Bilgen (1998)
studied the onset of double-diffusive natural convection in an inclined porous cavity
with equal and opposing buoyancy forces due to the imposition of transverse gradients
of temperature and concentration. The critical stability limit was investigated through
a numerical linear stability analysis using the Galerkin finite element method.

However, all of the above-mentioned studies are limited by the assumption of
two-dimensional flow and nothing can be inferred about the possible development
of three-dimensional flow patterns. To the best of our knowledge, three-dimensional
analysis of double-diffusive natural convection in fluid-saturated porous enclosures
subject to horizontal opposing gradients of temperature and concentration has not
been reported prior to the present work. In the present study the existence of three-
dimensional flow patterns in a fluid-saturated porous cubic cavity subject to opposing
horizontal temperature and concentration gradients is demonstrated using a three-
dimensional non-Darcy model. The effect of the governing parameters on the domain
of existence of the three-dimensional flow patterns is studied and the influence of the
main parameters on the average Sherwood and Nusselt numbers is investigated.

For certain parameter ranges it has been found that the flow structure is three-
dimensional with secondary flow formation in the transverse plane, which the two-
dimensional models fail to capture. Specially, for opposing flows at high Lewis
numbers, local density anomalies occur near the top and bottom walls, with alternating
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Figure 1. Physical model and the coordinate system.

high- and low-concentration regions. As a result dipolar vortices are found to exist,
similar to those formed by the injection of fluid into a stratified medium in the
laboratory experiments of Fuentes & Heijst (1994) and Flor & Heijst (1994).

2. Problem formulation
The geometry under consideration is a porous cubic cavity, saturated with a

binary fluid such as an aqueous solution (figure 1). Different temperatures and
concentrations are specified between the left-hand (T1, C1) and right-hand vertical
walls (T2, C2), where C1 > C2 and T1 > T2, and zero heat and mass fluxes are
imposed on the remaining walls. The flow is assumed to be laminar and steady. The
binary fluid is assumed to be Newtonian, incompressible and to satisfy the Boussinesq
approximation. The porous medium is assumed to be isotropic, homogeneous and in
thermodynamic equilibrium with the fluid. Finally, the Soret and Dufour effects are
assumed to be negligible. The fluid density is assumed to be constant, except in the
driving term of the Navier–Stokes equations, where it varies linearly with the local
temperature and solute mass fraction as

ρ = ρ0[1− βT (T − T0)− βC(C − C0)], (1)

where

βT = −1

ρ

[
∂ρ

∂T

]
C

and βC = −1

ρ

[
∂ρ

∂C

]
T

, (2)

with βT > 0 and βc < 0. The thermophysical properties of the fluid are taken as
constant and they are estimated at a reference temperature T0 and solute mass
fraction C0, which are set to be equal to T2 and C2, respectively. Using the following
dimensionless variables: X = x/L, Y = y/L, Z = z/L, V = vL/ν, P = pL2/ρν2,
Θ = (T − T2)/(T1 − T2), Φ = (C − C2)/(C1 − C2) where L is the length of one
side of the cubic cavity and ν is the kinematic viscosity of the fluid, the equations
governing the conservation of mass, momentum, energy and species concentration in
non-dimensional form can be written as (Goyeau et al. 1996)

∇ · V = 0, (3)

1

ε2
(V · ∇)V = −∇P +

RaT

Pr
(Θ +NΦ)k − 1

Da
V + Λ∇2V , (4)

V · ∇Θ =
1

Pr
λ∇2Θ (5)
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V · ∇Φ =
1

LePr
∇2Φ, (6)

where RaT = (gβT∆TL3)/να is the thermal Rayleigh number, N = RaS/RaT the
ratio of the buoyancy forces, RaS = (gβC∆CL3)/να the solutal Rayleigh number,
Da = K/L2 the Darcy number, Pr = ν/α the Prandtl number, Le = α/D the Lewis
number and α = k/ρ0Cp is the effective thermal diffusivity. The parameters g, k, Cp,
D and k refer to gravitational acceleration, unit vector in vertical direction, specific
heat, molecular diffusivity of the fluid and effective thermal conductivity, respectively.
A positive value of N results in augmenting convection (cooperative buoyancy forces)
and a negative value leads to opposing flow.

Equation (4) represents the Brinkman extended Darcy model where the Forch-
heimer inertia term is dropped as suggested by Lauriat & Prasad (1987) due to the
fact that for all computations in this study the particle Reynolds number defined by

Re =
ρvK0.5

µ
(7)

is less than unity. K and ε are the permeability and porosity of the porous medium.
Λ = µ′/µ is the ratio of the effective viscosity in the Brinkman term to fluid viscosity.
The variation in Λ is not fully understood and most of the works on non-Darcy
formulation consider Λ = 1. Finally, λ = km/kf is the ratio of thermal conductivities
of the porous medium and the fluid. The average heat and mass fluxes at the left-hand
wall are given in non-dimensional terms by Nusselt and Sherwood numbers as

Nu =

∫ 1

0

∫ 1

0

[
∂Θ

∂X

]
x= 0

dY dZ and Sh =

∫ 1

0

∫ 1

0

[
∂Φ

∂X

]
x= 0

dY dZ. (8)

3. Numerical method
Equations (3)–(6) are discretized using staggered non-uniform control volumes. In

order to minimize the numerical diffusion errors, the quick scheme (Leonard 1979) is
used in approximating the advection terms. The flux limiter known as ultra-sharp
(Leonard & Mokhtari 1990) is used to eliminate the non-physical oscillations inherent
in the quick scheme. To alleviate the convergence problems the method is implemented
in the solution procedure using the deferred correction approach suggested by Khosla
& Rubin (1974). The simplec algorithm (Van Doormaal & Raithby 1984) is used
to couple the momentum and continuity equations. The momentum equations are
solved by applying one iteration of the strongly implicit procedure (SIP) of Stone
(1968) which is extended here to handle three-dimensional problems. The pressure
correction equation is solved iteratively by applying the conjugate gradient (CG)
method (Hackbush 1994) until the sum of absolute residuals has fallen by a factor of
ten. The coefficient matrix resulting from the discretization of the energy and species
concentration equations is non-symmetric and solved iteratively by the Bi-CGSTAB
method (Van der Vorst 1992). SSOR preconditioning (Hackbush 1994) is used for
accelerating the convergence rates of both CG and Bi-CGSTAB methods. Generally,
under-relaxation factors of 0.7, 0.7, 0.7, 1.0, 0.9 and 0.9 were applied to U, V , W , P , T
and C , respectively. For a few cases only, under-relaxation factors for T and C had
to be reduced to 0.5 where convergence problems were met.

To avoid the excessively high computer times inherent in the solution of three-
dimensional natural convection problems, a full approximation storage (FAS) full
multigrid (FMG) method (Hortmann, Peric & Scheuerer 1990) is used to solve
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Figure 2. Comparison with the two-dimensional results of Goyeau et al. (1996).
Ra∗ = 100, Le = 100, Da = 10−5, Pr = 10.

the problem, which removes a wider spectrum of wavelengths more efficiently than
single grid methods. The equations are solved by a four-level fixed V-cycle procedure
starting at the coarsest grid and progressing to the finest grid level. For prolongation
operations tri-linear interpolation is used for all variables. For restriction, the area-
weighted average procedure is used for all quantities defined on the control-volume
surface such as velocities. The volume-weighted average procedure is adopted for
all quantities defined at the control-volume centre such as pressure, temperature and
concentration. 80×80×80 grids are used on the finest level with denser grid clustering
near boundaries using the sine function for the grid distribution.

To ensure convergence of the numerical algorithm the following criterion is applied
to all dependent variables over the solution domain∑ |φmijk − φm−1

ijk |∑ |φmijk| 6 10−5, (9)

where φ represents a dependent variable U, V , W , P , T and C , the indexes i, j, k
indicate a grid point and the index m the current iteration at the finest grid level.

In the steady-state approach adopted, the lack of convergence of the solution may
be interpreted as an indication of time-dependent states for the range of parameters
investigated. The CPU time required for convergence was approximately from 1
to 4 h on a 300 MHz Pentium II personal computer with 256 MB RAM, using
single-precision arithmetic with a Fortran 90 compiler.

Due to the absence of three-dimensional numerical data, the validation of the
three-dimensional code has been performed by comparison with the two-dimensional
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extended Brinkman formulation of Goyeau et al. (1996). As will be shown later,
there is a marked difference between the two- and three-dimensional model results
for opposing buoyancies for certain parameter ranges, where the flow regime is three-
dimensional. For this reason the comparison is done for positive values of N, where
the flow structure is found to be two-dimensional. The comparison of the average
Nusselt and Sherwood numbers is shown in figure 2 for the sinusoidal distribution of
an 80× 80× 80 mesh system. The results of the two-dimensional version of our code
are also included in the figure. It can be seen that for the rather high Lewis number
of 100, both versions of our code perform well over the range 0 < N < 30, for values
of the porous thermal Rayleigh number Ra∗ = RaT Da = 100 and Da = 10−5.

4. Results and discussion
The numerical model is used to investigate the domain of steady three-dimensional

flow patterns and the resulting heat and mass transfer characteristics of double-
diffusive convection in a porous cubic enclosure subject to opposing solutal and
thermal buoyancy forces (N < 0). The value of N is varied between −0.1 and −10
and Le is varied between 1.0 and 1000, for Ra∗ = 1.0–500. The other parameters
are kept constant: the Prandtl number of the fluid (Pr = 10), as well as the porous-
medium properties (Λ = 1, λ = 1, ε = 1, Da = 10−5).

The range of parameters used are typical of the mushy zone in solidification ex-
periments using ammonium chloride (NH4Cl) (Nishimura & Imoto 1994) or Na2CO3

solutions (Bénard et al. 1996), which are widely considered to be good analogues
for metallic alloys, such as lead–tin, aluminium–copper and nickel–aluminium, as dis-
cussed by Huppert (1990). The NH4Cl or Na2CO3 solutions are much easier to handle
than their metallic counterparts since the liquid phase is transparent. A typical range
of Prandtl number values for these solutions is 10 to 13. Bénard et al. (1996) give the
range of Lewis numbers during their experiments with Na2CO3 as 186 < Le < 194.

Quantitative measurement of mushy-layer properties is difficult because the forest
of dendrites makes the region opaque and assessment of porosity–permeability rela-
tionships is still a difficulty in modelling such regions. However, in practice the Darcy
number is known to be roughly proportional to the square of the dentrite spacing
and is typically 10−3 or smaller (Schulze & Worster 1998).

4.1. Flow structures

Due to the thermal and solutal boundary conditions considered here, the left-hand
sidewall has a higher temperature and higher concentration than the right-hand
sidewall. As a result, the direction of the flow due to thermal buoyancy forces is
clockwise, whereas the direction of the flow due to solutal buoyancy depends on
the sign of the concentration expansion coefficient βC . The direction of solutal flow
is counterclockwise for βC or N < 0, opposing the thermal flow, which is the case
considered in this study.

In figures 3 and 4 the effects of the buoyancy ratio are illustrated for Ra∗ = 100
and Le = 10. For −0.3 6 N 6 0 the flow pattern is two-dimensional, where the
fluid is observed to flow in the (X, Z )-plane with no secondary flow formation on
the transverse planes. Figure 3 shows the results obtained for N = −0.5. The flow is
driven by the thermal buoyancy force, so that the main flow direction is clockwise
in the (X, Z)-plane. The resulting flow pattern, isotherms and iso-concentration lines
on different planes clearly show that the flow is no longer parallel to the (X, Z)-
plane. The projection of streamlines on the mid (X, Z )-plane are not closed, but
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Figure 3. Projection of (a) streamlines, (b) isotherms and (c) concentration lines on the mid
(X, Z)-plane (top), (X, Y )-plane at Z = 0.9 (middle) and mid (Y , Z )-plane (bottom), for Ra∗ = 100,
Le = 10 and N = −0.5.

have a spiral form. The spiralling of the streamlines implies that the gradient of the
out-of-plane velocity component (∂V/∂Y ) is non-zero which is an indication of the
three-dimensionality of the flow field. This can be observed from the projection of
streamlines onto the (X, Y )-plane at Z = 0.9 where the streamlines are no longer
parallel to the x-axis but diverge towards the sidewalls. The three-dimensional nature
of the flow field is shown more clearly on the streamline plots on the mid (Y , Z)-plane
(X = 0.5), where the flow consists of two oppositely rotating secondary flow cells, each
containing two smaller vortices, all superimposed on the main flow on the (X, Z )-
plane. It is demonstrated by the concentration contours on the mid (Y , Z)-plane that
low-concentration fluid is advected to the roof of the cavity at Y = 0.5 as a result
of buoyancy forces. Upon hitting the top wall it separates into two branches towards
the sidewalls, where the concentration is maximum. As a result, the high-density fluid
descends along the lateral walls. However, due to the sharp negative concentration
gradient the density decreases away from the lateral walls where a buoyant flow is
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Figure 4. As figure 3 but at N = −0.7.

set up in the core of the cavity, which opposes the descending flow, thus leading to
vortex formation in the upper half of the cavity.

The flow field in the mid (X, Z)-plane shown in figure 3 exhibits a non-symmetric
profile with respect to the X = 0.5 and Z = 0.5 axes, which is contrary to the
known steady two-dimensional results for double-diffusive flow in both porous and
non-porous square cavities. Previous two-dimensional studies on double-diffusive con-
vection in square cavities, whether porous or not, indicate centro-symmetric rotating
flow structures in the steady state. In their two-dimensional study on double-diffusive
convection with equal and opposing buoyancy forces in a non-porous cavity, Gho-
rayeb, Khallouf & Mojtabi (1999) point out that convective steady-state flow is
centro-symmetric regardless of Le and that it is asymmetric only in the oscillatory
mode for some Lewis number values. The loss of symmetry in the three-dimensional
double-diffusive steady flow patterns in the mid (X, Z)-plane shown in figures 3 and
7 is in contrast to previous two-dimensional studies and needs further investigation.
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Figure 5. Multi-cell flow patterns in the two-dimensional flow regime for Ra∗ = 100 and Le = 10.
(a) N = −1.0, (b) N = −2.0, (c) N = −5.0.

Upon decreasing N to −0.7 the opposing mass species buoyancy starts to exert
more influence and the system bifurcates to a different mode. The determination of
the exact value of N for this transition is not attempted in this study. The resulting
flow, isotherm and concentration patterns are presented in figure 4. The projection
of streamlines on the mid (X, Z )-plane have a spiral form with two smaller eddies
near the top-left and bottom-right corners. In this case the three-dimensional flow is
characterized by a secondary spiral motion on the (Y , Z)-plane, superimposed on the
main flow rotation on the (X, Z )-plane. The rotation sense of the spiral roll on the
(Y , Z)-plane is believed to depend on the initial disturbances caused by numerical
noise. The resultant flow proceeds along the diagonal as observed from the flow
patterns on the (X, Y )-plane at Z = 0.9.

For N = −0.8 and −0.9 no steady convergent solution could be obtained. Residuals
of velocities oscillate continuously, which may be an indication of a time-dependent
flow field in this range. Alavyoon et al. (1994) found that oscillating motion exists
in cases where the contribution of the gradients of temperature and concentration
to buoyancy are of comparable magnitude. For N 6 −1.0 the resultant steady-state
flow patterns are two-dimensional, with no secondary flows in the (Y , Z)- or (X, Y )-
planes. In this range the flow patterns, isotherms and mass concentration profiles are
found to be similar to the two-dimensional results of Mamou et al. (1995a). Figure 5
illustrates the projection of streamlines on the mid (X, Z)-plane. For N = −1 the
flow consists of a solutally driven counterclockwise rotating cell in the central part
of the cavity and two thermally driven clockwise circulations adjacent to the cavity
corners. The multi-cell pattern is lost for N < −2, where the thermally driven cells
disappear and the whole flow is primarily driven by the solutal buoyancy.

To assess the effect of the porous medium, simulations have also been done for
double-diffusive convection in the cubic enclosure without any porous medium, for
wide range of flow parameters. Somewhat similar three-dimensional flow structures
were obtained with secondary flow formation in the (Y , Z)-planes (Sezai & Mohamad
1999). Thus, it seems that the three-dimensional nature of the flow structure is the
result of double-diffusive convection but not due to the presence of the porous
medium.

If the Lewis number is increased to 100 the flow becomes three-dimensional for
N as low as −0.2. Figure 6 illustrates the projection of streamlines, isotherms and
iso-concentration lines on different planes for N= − 0.2, Le= 100 and Ra∗= 100. A
rather complex flow pattern results with secondary flow vortices on the mid (Y , Z)-
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Figure 6. Projection of (a) streamlines, (b) isotherms and (c) concentration lines on the mid
(X, Z)-plane (top), (X, Y )-plane at Z = 0.9 (middle) and mid (Y , Z )-plane (bottom), for Ra∗ = 100,
Le = 100 and N = −0.2.

plane near the top and bottom walls due to the increasing effect of the opposing
mass species buoyancy forces. The corresponding iso-concentration plots on the
mid (Y , Z)-plane and (X, Y )-plane at Z = 0.9 indicate alternating high- and low-
concentration regions. The iso-concentration plot on the mid (Y , Z)-plane indicates
low-concentration regions near the top and bottom walls at Y ≈ 0.25 and Y ≈ 0.75.
The rising fluid in these low-concentration regions separates into two branches upon
hitting the top wall, as observed from the flow patterns on the mid (Y , Z)-plane,
and flows towards higher concentration regions, where it gets heavier and descends
downward. The descending flow is opposed by the buoyant flow where two dipolar
vortices form at the top half of the cavity consisting of two counter-rotating vortices.
For the fluid descending at the lower half of the cavity at Y ≈ 0.25 and Y ≈ 0.75,
the concentration decreases as it approaches the bottom wall thereby creating an
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Figure 7. Projection of (a) streamlines, (b) isotherms and (c) concentration lines on the mid
(X, Z)-plane (top), (X, Y )-plane at Z = 0.9 (middle) and mid (Y , Z )-plane (bottom), for Ra∗ = 500,
Le = 10 and N = −0.4.

opposing buoyant flow. As a result the positions of the two dipolar vortices formed
near the bottom wall are displaced by an amount equal to the distance between the
minimum and maximum concentration points near the horizontal walls.

For Ra∗ = 500 and Le = 10 the flow structure is three-dimensional for N6−0.3
(for N increasing in the negative direction). Examples of the resulting flow structure,
isotherms and iso-concentration lines are given in figure 7 for N = −0.4.

Again four pairs of dipolar vortices are formed on the mid (Y , Z)-plane, which
expand to fill the whole domain. The dipolar vortex structure in the top half of
the cavity is similar to the vortex dipoles created by horizontal injection of fluid
into a stratified medium in laboratory experiments (Flor & Heijst 1994; Fuentes &
Heijst 1994). The dipolar vortex consists of two closely packed patches of oppositely
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signed vorticity and has a two-dimensional character. The dipolar vortices are known
to provide an efficient mechanism for the transport of mass and momentum and
are believed to play an important role in the transport of scalar properties such as
salt and heat in oceans (Fuentes & Heijst 1994). Again, the alternating high- and
low-concentration regions near the top and bottom walls are evident from the iso-
concentration lines at the mid (Y , Z)-plane and (X, Y )-plane at Z = 0.9, as a result
of which the isotherms are highly distorted.

However, it seems that the mechanisms that lead to the formation of the dipolar
vortices in this study are different from those created by the injection of fluid into a
stratified medium. In the present study the dipolar vortex structure appears to be the
result of the interaction of the fluid flow with the horizontal walls of the cavity and
is accompanied by the formation of alternating low- and high-concentration regions
in the porous medium at high Lewis numbers. Dipolar vortices form when falling
high-concentration or rising low-concentration fluid parcels are opposed by the main
fluid flow. However, no such dipolar vortices could be found from simulation results
obtained in a non-porous cubic cavity.

For Ra∗ = 500 and Le = 100 the flow structure becomes three-dimensional for N
as low as −0.1. The resulting flow structure, isotherms and iso-concentration plots
on different planes are shown in figure 8. In this case the number of dipolar vortices
increased to six, with corresponding low- and high-concentration regions. For larger
negative N-values the flow becomes time dependent as judged from the oscillating
mass residuals where no convergent steady solution could be obtained.

4.2. Heat and mass transfer

4.2.1. Effect of buoyancy ratio

The effect of buoyancy ratio N on the average Nusselt and Sherwood numbers
is depicted in figures 9(a) and 9(b), respectively, for Ra∗ = 10 and Le = 10. The
variation of the secondary flow structure on the mid (Y , Z)-plane is illustrated in
figure 10. Starting from pure heat transfer results at N = 0 both the Nusselt and
Sherwood numbers decrease upon increasing the magnitude of N in the negative
direction. This is due to the fact that the flow driven by the thermal buoyancy effect
is weakened more by the opposing buoyancy effect due to solutal variations as N
becomes more negative. As the thermal and solutal buoyancy forces approach being
equal but opposite in direction, the net body forces on the rising fluid near the heated
wall diminish, as it approaches the turning point near the top of the cavity, where the
concentration is highest. This can be observed from the concentration profile in the
mid (X, Z)-plane, shown earlier in figure 3. As a result, fluid movement in the lateral
direction becomes possible, since an additional degree of freedom is available for the
fluid to flow in the lateral direction in the cubic cavity, as shown in the flow profile
on the horizontal (X, Y )-plane at Z = 0.9 in figure 3. The heavier fluid descends the
lateral walls, setting up a secondary flow in the (Y , Z )-plane where the flow becomes
three-dimensional. The steady three-dimensional character of the flow is retained for
−0.8 < N < −0.3. Outside this range, where either the thermal or solutal buoyancy
forces dominate, the three-dimensional effects are suppressed, the flow is confined to
the (X, Z)-plane and the flow structure becomes two-dimensional. The flow bifurcates
to an oscillatory mode for −0.92 < N < −0.8.

The above results are for zero initial velocity, temperature and concentration fields.
If the results for N= −0.7 are used as initial conditions and N is varied in steps, then
the upper branch of the solutions shown in figures 9(a) and 9(b) is obtained. On this
branch of solutions the spiral-type flow pattern in the mid (Y , Z )-plane is retained
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Figure 8. Projection of (a) streamlines, (b) isotherms and (c) concentration lines on the mid
(X, Z)-plane (top), (X, Y )-plane at Z = 0.9 (middle) and mid (Y , Z )-plane (bottom), for Ra∗ = 500,
Le = 100 and N = −0.1.

between N= − 0.45 and −0.8. However, the effect of these multiple solutions on the
average Nusselt and Sherwood numbers is quite small and barely noticeable on the
scale given in figure 9.

Simulations have also been done using a two-dimensional model with the same
grid distribution as that of the three-dimensional model and the results are compared
in figure 9. Both the Nusselt and Sherwood numbers are in close agreement for values
of N where the flow is two-dimensional. This is expected, as the retarding effect of the
lateral sidewalls is negligible due to the low flow velocities inherent in porous media.
However, in the range where the flow structure is three-dimensional, there is a marked
difference between the two- and three-dimensional model results for both Nusselt and
Sherwood numbers. The difference increases as the effects of the opposing buoyancy
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Figure 9. (a) Nusselt number and (b) Sherwood number, vs. the buoyancy ratio
(Ra∗ = 100, Le = 10).

forces approach being equal in magnitude, reflecting the effect of three-dimensional
flow structure, with secondary flow in the (Y , Z)-plane superimposed on the main
flow rotation.

For N ≈ −1.0 both Nu and Sh are minimum and close to the diffusive solution,
where the buoyancy forces induced by the thermal and solutal effects are opposing
and of equal intensity. As the magnitude of N is increased beyond −1.0 both Nu and
Sh increase due to increasing of the opposing effect of the solutal buoyancy where
the flow becomes increasingly more solutally dominated.
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Figure 10. The secondary flow patterns on the mid (Y , Z)-plane for different buoyancy ratios:
(a) N = −0.3, (b) N = −0.4, (c) N = −0.5, (d) N = −0.6, (e) N = −0.7, (f) N = −1.0 (Ra∗ = 100,
Le = 10).

4.2.2. Effect of Lewis Number

The effect of the Lewis number on the average Nusselt and Sherwood numbers
for opposing flows in the transition region is illustrated in figure 11 for N = −0.5
and Ra∗ = 10. The variations of the secondary flow structures on the mid (Y , Z)-
plane as the Lewis number increases are illustrated in figure 12 for zero initial
velocity, temperature and concentration fields. For Le 6 20 the flow structure is
two-dimensional with no secondary flows on the (Y , Z)- or (X, Y )-planes. For these
low Lewis numbers the flow field is essentially controlled by the concentration field.
For Le ≈ 22, bifurcation from two- to three-dimensional structure takes place, where
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Figure 11. Nusselt and Sherwood numbers vs. Lewis number (N = −0.5, Ra∗ = 10).

a rotational flow is also set up in the (Y , Z )-plane, which is superimposed on the
main flow rotation in the (X, Z )-plane. It is well known that all nonlinear dynamic
systems have some universal features; when some controlling parameter (Le, Ra, N,
etc.) is varied then the system undergoes a series of bifurcations that ultimately lead to
chaos. The formation of secondary flows on the transverse planes marks the transition
of the flow structure prior to the first bifurcation. For 23 < Le < 90 the secondary
flow structure on the mid (Y , Z)-plane consists of a single spiral roll superimposed
on the main flow rotation in the (X, Z)-plane. In this range the Sherwood number
decreases slightly with Lewis number. On the other hand if zero velocity, temperature
and concentration fields are used as initial conditions then the system undergoes
a bifurcation to another mode at a Lewis number between 95 and 100, the exact
determination of which is not attempted in this study. This is accompanied by a
sudden rise in the rate of mass transfer, where the upper solution branch in figure 11
is followed. The resulting flow structure consists of two counter-rotating secondary
flow cells in the (Y , Z)-plane superimposed on the main roll cell in the (X, Z)-plane.
The Sherwood number again increases with Lewis number for Le > 90. For these large
Lewis numbers the velocity field is now primarily controlled by the thermal buoyancy.
The Nusselt number is close to unity for all Lewis numbers at this rather low porous
thermal Rayleigh number, indicating a conduction-dominated heat transfer.

Starting from the solution obtained for Le = 103 on the upper branch and decreas-
ing the Lewis number gradually after a convergent solution is obtained for a given
Le, it is found that the bifurcation from the upper to the lower branch takes place at
a Lewis number between 115 and 120. On the other hand, starting from Le = 1.0 and
repeating the above procedure with increasing Lewis numbers results in the lower
branch of the solutions.

The results obtained from the two-dimensional model are also shown in figure 11,
and they are observed to be almost the same as those of the three-dimensional model
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Figure 12. The secondary flow patterns on the mid (Y , Z )-plane for different Lewis numbers:
(a) Le = 20, (b) Le = 22, (c) Le = 23, (d) Le = 90, (e) Le = 100, (f) Le = 1000 (Ra∗ = 10,
N = −0.5).

up to a Lewis number where transition to three-dimensional flow structure starts. At
this point the two-dimensional solution follows a completely different branch, yielding
much higher Sh values.

4.2.3. Effect of porous thermal Rayleigh number

Figure 13 gives an example of the influence of the porous thermal Rayleigh
number on the Nusselt and Sherwood numbers for N = −0.5 and Le = 10. Figure 14
illustrates the evolution of the corresponding flow patterns on the mid (Y , Z)-plane as
the porous thermal Rayleigh number increases with zero initial velocity, temperature
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Figure 13. Nusselt and Sherwood numbers vs. porous thermal Rayleigh number
(N = −0.5, Le = 10).

and concentration fields. When Ra∗ is small enough (Ra∗ < 30) the flow pattern
is controlled by concentration and the resulting flow structure is two-dimensional.
However, for Ra∗ ≈ 30 in addition to the main flow rotation on the (X, Z )-plane a
secondary flow starts in the (Y , Z )-plane, where transition to three-dimensional flow
structure takes place. For Ra∗ ≈ 51 the system bifurcates to a totally different structure
accompanied by a sudden jump in the Sherwood number (figure 13), for zero initial
velocity, temperature and concentration fields. Four counter-rotating secondary flow
vortices appear on the (Y , Z)-plane, the sizes of which increase with porous thermal
Rayleigh number. When Ra∗ increases to about 400 each of these vortices splits
into two, resulting in a rather complicated flow structure dominated by the thermal
buoyancy forces.

The same solution branch is obtained by decreasing the porous thermal Rayleigh
number gradually after each convergent solution, where the Sherwood number drops
suddenly at Ra∗ ≈ 51. However, repeating the above procedure with increasing Ra∗
results in a smooth increase of Sherwood number up to Ra∗ ≈ 115–120, where a
bifurcation to a new state takes place with a sudden fall in Sh. No convergent steady
solution could be obtained for Ra∗ > 600, which may be due to oscillatory flow.

The results obtained from the two-dimensional model agree very closely with
those of the three-dimensional model in the range where the flow structure is two-
dimensional (figure 13). However, in the three-dimensional region, the two-dimensional
model over-predicts both the Nusselt and Sherwood numbers due to its failure to
detect the effects of the secondary flow in the transverse plane.
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Figure 14. The secondary flow patterns on the mid (Y , Z )-plane for different thermal
Rayleigh–Darcy numbers: (a) Ra∗ = 20, (b) Ra∗ = 50, (c) Ra∗ = 60, (d) Ra∗ = 200, (e) Ra∗ = 300,
(f) Ra∗ = 400 (Le = 10, N = −0.5).

5. Conclusion
The present work is an attempt to model the three-dimensional aspects of ther-

mosolutal natural convection in a porous cubic enclosure subject to horizontal and
opposing gradients of temperature and concentration. The main controlling param-
eters, such as porous thermal Rayleigh number, Lewis number and buoyancy ratio
are varied to gain new insights into the formation of different flow patterns. The main
findings of the present investigation can be summarized as follows:

(1) Upon increasing N from zero in the negative direction there is a critical value
of the buoyancy ratio where secondary flow is set up in the transverse plane, super-
imposed on the main flow rotation, which cannot be detected by two-dimensional
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models. As N is increased further the concentration buoyancy forces become approx-
imately equal and opposite to the thermal buoyancy forces, where the flow becomes
oscillatory. For larger negative N-values solutal buoyancy forces dominate, where a
reversal to the two-dimensional flow structure occurs.

(2) For given values of N and Ra∗ the effect of the Lewis number was investigated.
For relatively low Lewis numbers, where the flow is dominated by solutal buoyancy,
the resulting flow structure is two-dimensional. In this range Sh increases with Le,
while Nu is close to unity, indicating a diffusive heat transfer mechanism. For higher
Lewis numbers the magnitude of the thermal buoyancy forces increases and at a
critical value of Le the flow structure becomes three-dimensional, characterized by a
secondary spiral-type rotation, in addition to the main flow rotation. In this range Sh
decreases slightly. As the Lewis number is increased further the system bifurcates to
a completely different three-dimensional steady state.

(3) A similar behaviour is observed when the porous thermal Rayleigh number
is changed at fixed N and Le. Following the two-dimensional flow structure at
relatively small Ra∗ a transition state is reached where the flow becomes three-
dimensional. Several flow bifurcations are detected at higher Ra∗ values, where the
flow is characterized by complex three-dimensional pattens.
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